
NavP Versus SPMD :
Two Views of Distributed Computation

Lei Pan, Lubomir F. Bic, Michael B. Dillencourt, and Ming Kin Lai
School of Information & Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

{pan,bic,dillenco,mingl}@ics.uci.edu

ABSTRACT
We introduce a new view of distributed computation, called
the NavP view, under which a distributed program is com-
posed of multiple sequential self-migrating threads called
DSCs. In contrast with those in the conventional SPMD
style, programs developed in the NavP view exhibit the
nice properties of algorithmic integrity and parallel pro-
gram composition orthogonality, which make them clean
and easy to develop and maintain. The NavP programs are
also scalable. We use example code and performance data
to demonstrate the advantages of using the NavP view for
general purpose distributed parallel programming.

KEY WORDS
navigational programming, distributed sequential comput-
ing, distributed parallel computing, single program multi-
ple data, message passing, views

1 Introduction

The overall goal of our research is a methodology that
helps to develop easy and scalable distributed parallel pro-
grams from sequential or parallel algorithms. We incor-
porate computation mobility, which distinguishes our ap-
proach from others. Computation mobility is defined as
the ability for the locus of computation to migrate in a dis-
tributed environment and continue as it meets the required
data. It is facilitated by self-migrating threads. The pro-
gramming of self-migrating threads is called Navigational
Programming (NavP).

Distributed sequential computing (DSC), defined
as computing with distributed data using a single locus of
computation, plays a key role in our approach. In the form
of a self-migrating thread, a DSC program increases the
performance of its non-distributed sequential counterpart
on large problems by eliminating disk paging at a cost of
efficient network communication, meanwhile preserves al-
gorithmic integrityand hence good programmability [1].
Moreover, DSC is not just about sequential programming,
it also serves distributed parallel computing(DPC). If par-
allel programming starts from a sequential algorithm, our
methodology would consist of two transformations: the
first converts the sequential algorithm into a DSC program,

and the second turns the DSC program into a DPC program.
If the starting point is a parallel algorithm, we construct
multiple concurrent DSC threads to cover all the computa-
tions. In both cases, computation mobility helps to achieve
efficient and correct data access. And it also provides a
new way of describing computations in a distributed envi-
ronment.

A distributed computation can be represented in a
two-dimensional space consisting of a spatial and a tem-
poral dimension. In this 2D space, the computation can be
further seen in two different views. A view represents how
we envision or describe a phenomenon. One of the pos-
sible views is SPMD, or “single program, multiple data.”
SPMD is a classical programming style that is commonly
used in writing message-passing distributed programs [2].
In SPMD, a programmer writes one piece of code which
is executed by the processes on all the nodes. All pro-
cesses work with the same program text, but different pro-
cesses carry out different sections of the text. This is done
as follows. In systems such as MPI, a program can call
some system-provided functions to get the ID number of
the caller and the total number of processes, respectively.
Now the functionality of the processes can be coded in
terms of their ID numbers using if and else if statements.

In this paper, we introduce a new view called the
NavP view, and compare it with the classical SPMD view
in the context of general purpose distributed programming.
In the NavP view, the description of a computation follows
the migration of its locus. Computation mobility enables
the NavP view, and the NavP view provides a new perspec-
tive to developing distributed parallel programs.

The paper is organized as follows. Section 2 intro-
duces a 2D representation of distributed computation. Sec-
tion 3 uses one simple example to show how the two differ-
ent views are used in distributed programming, and some
advantages of using the NavP view. Section 4 presents a
real-world example, parallel Cholesky factorization, and
compares its two implementations using the two views.
The last section contains some final remark.



node1

t (
tim

e)
t1

t2

t3

t4

node2 node3 node4 s (space)

Computation 1

Computation 2

Figure 1. A two-dimensional representation.

2 A Two-dimensional Representation

We use N to denote the set that contains all the participating
nodes in a distributed memory environment, and T to rep-
resent the set of time periods during which computations
happen on these nodes. The Cartesian product of N and T

(i.e., N × T) forms a multiple-dimensional space. The set
N, which represents the spatial dimension, can be Carte-
sian product of sub-spaces, but for simplicity without los-
ing generality we assume that spatially we have only one
dimension throughout this paper. As depicted in Fig. 1,
along the spatial dimension each discrete coordinate value
represents one participating node (i.e., N = {node1, node2,
node3, node4}), and along the temporal dimension each
discrete coordinate value stands for a period of time (i.e.,
T = {t1, t2, t3, t4}). The shapes each represent a certain
computation that happens in a specific location at a spe-
cific time. For example, the triangle in dashed-line box
at (node2, t3) means that on node2, computation 2 is per-
formed at time t3.

There are several issues that must be addressed when
developing distributed programs. A dependency graph
must be developed from a sequential or parallel algorithm.
Data and computations must be mapped to the grid points
in the 2D space. This mapping cannot violate the depen-
dency relationship represented by the dependency graph,
and should ideally satisfy two conflicting goals of maxi-
mizing parallelism and minimizing communication. These
two steps produce a 2D representation of the computation.
This 2D representation must then be turned into one or
more sequential threads. Collectively these threads must
cover every node and every edge of the dependency graph
respecting the edge directions. The role of a view in fulfill-
ing these tasks is to provide a way to group various compu-
tations into different threads.

3 Two Views of Distributed Computation

We describe two views, namely SPMD and NavP, with the
help of a simple example.

3.1 Simple example

The distributed environment for the simple example is one
that consists of two machines connected to each other on
a network. In other words, our 2D world has two coor-
dinate values, namely node1 and node2, along the spatial
dimension. The example, with the pseudocode shown in
Fig. 2(a), is a sequential program of three lines. Line (1)
extracts the diagonal entries of matrix A and assigns them
to vector v1, and lines (2) and (3) multiply the matrices B
and A by two different vectors v1 and v2, respectively. In
a non-distributed environment, the code would be executed
as shown in Fig. 3(a). A dependency graph, as shown in
Fig. 3(b), can be drawn based on the observation that com-
putations at lines (2) and (3) depend on the intermediate
results produced at lines (1) and (2), respectively. We fur-
ther assume that A and B are large N × N matrices, and
v1, v2, and v3 are vectors of size N , and A and B are
distributed such that A is on node1 and B is on node2 re-
spectively. The computations are then distributed to the 2D
world as shown in Fig. 3(c) respecting the dependency re-
lationship. To reduce communication, lines (1) and (3) are
executed on node1 because the matrix A they use resides
on node1, and line (2) is run on node2 since matrix B is on
node2. The rule we use here for computation distribution
is referred to as the principle of pivot-computes, which is
defined as the principle under which a computation takes
place on the node that owns the large-sized data. This node
is called the pivot node. The principle suggests that the as-
signments of computations to nodes are done in such a way
that large-sized data pieces (e.g., the matrices A and B) are
not communicated across the network.

(1) v1 = diag (A)
(2) v2 = B v1
(3) v3 = A v2

(a)

(1) v1 = diag (A)
(1.1) hop (node2)
(2) v2 = B v1
(2.1) hop (node1)
(3) v3 = A v2

(c)

(0.1) if µ == node1
(1) v1 = diag (A)
(1.1) Send (v1, node2)
(1.2) Recv (v2, node2)
(3) v3 = A v2
(3.1) else if µ == node2
(3.2) Recv (v1, node1)
(2) v2 = B v1
(2.1) Send (v2, node1)
(2.2) end

(b)

Figure 2. Computing on distributed data. (a) Sequential.
(b) SPMD view. (c) NavP view.

3.2 The SPMD view

A view represents how we describe a phenomenon in a
space. In the SPMD view, computations are described at



Computation

Execution flow
(1)

(2)

(3)

(a)

Dependency

Computation

(1)

(3)

(2)

(b)

t1

t2

t3

Computation

Dependency

node2 snode1

(2)

(3)

t 

(1)

(c)

t1

t2

t3

node1 node2

if() else if()

s

t

(1)

(3)

(2)

Computation

Execution flow
Communication &
Synchronization

(d)

t1

t2

t3

Computation

Execution flow

node2node1

t

(1)

(2)

(3)

s

(e)

Figure 3. A sequential computation over distributed data. (a) Sequential. (b) Distribution. (c) Dependency graph. (d) SPMD
view. (e) NavP view.

the spatial locations of the 2D distributed environment. The
computations on each node are grouped into a thread which
is run on that node. SPMD code is partitioned into blocks
associated with different nodes, or the spatial coordinates,
using if and else if statements, and within a block for each
node, code lines are listed in the order in which they are ex-
ecuted along the temporal dimension.

The code in the SPMD view for the simple exam-
ple is listed in Fig. 2(b), and its execution is visualized in
Fig. 3(d). We make the following two observations: 1. The
original sequential code is restructured in the SPMD imple-
mentation. In particular, lines (1) and (3) are grouped to-
gether in the if block, because they are executed on node1.
And line (2) is in the else if block, because it is executed
on node2. Line (2) is no longer in between lines (1) and (3)
in Fig. 2(b), as it used to be in the original code shown in
Fig. 2(a); and 2. Explicit communication and synchroniza-
tion between nodes are needed even for the (distributed)
sequential program. This is because there are multiple
threads each running on a node despite the fact that the
computation we are describing is sequential. The arrows
in Fig. 3(d) depict the message flows that are used for com-
munication and synchronization.

3.3 The NavP view

In the NavP view, the simple example is implemented us-
ing a self-migrating thread. We first put the relatively small
data pieces v1 and v2 in agent variables (the ones that are
carried by an agent), and the large-sized data pieces A and
B in node variables (the ones that are stationary to a node)
on node1 and node2, respectively. We then insert hop()
statements into the code, as shown in Fig. 2(c), in order for
the computation locus to migrate to the right node where
small and large sized data meet for the execution to happen.
This implementation performs distributed sequential com-
puting (DSC). The execution flow of the DSC is depicted
in Fig. 3(e). The implementation uses the NavP view, in
which the description of a computation follows the move-
ment of its locus. Under the NavP view, sequential compu-
tations (distributed or not) are grouped into one thread, and
this thread is self-migrating.

The simple example reveals two advantages of using
the NavP view for distributed sequential computing.

1. The implementation shown in Fig. 2(c) preserves the
original order of code lines. This property of DSC
preserving the original code structure is referred to



as algorithmic integrity[1]. DSC also preserves loop
structures, which can be seen from our case study pre-
sented in section 4.

2. No explicit communication and synchronization are
needed in the NavP view, as can be seen if we compare
Fig. 3(e) with Fig. 3(d). Under the NavP view, the se-
quential computations are grouped into one thread, in
contrast to in the SPMD view multiple threads each
running on a node. As such, communication and syn-
chronization are intra-agent, and therefore are sub-
sumed in the program execution flow. Across nodes,
the locus of computation flows using hop() state-
ments. A DSC is seen as a 1D problem in the NavP
view, rather than a 2D problem in the SPMD view.
This simplification, however, does not mean that a
NavP programmer has less control over communica-
tion or synchronization than a SPMD program does.

4 Case Study

In this section, we present parallel Cholesky factorization
and its implementations in the two views. Cholesky fac-
torization is an algorithm for factorizing symmetric posi-
tive definite matrices [3]. A positive definite matrix A can
be factored into the product of two matrices A = GGT ,
where G is a lower triangular matrix called the Cholesky
triangle. This decomposition can then be used for differ-
ent purposes, such as solving a linear system of equations
of Ax = b. The Cholesky factorization algorithm takes A
as its input and produces the matrix G. It works in place on
A; when it concludes, the entries on and below the diago-
nal are the entries of G. For simplicity we will assume here
that A is a dense matrix of n × n size.

(1) for k = 1 : n

(2) A(k : n, k) / =
√

A(k, k)

(3) updating (k, n)

(4) end

(5) updating (int k, int n)
(6) for j = k + 1 : n
(7) A(j : n, j)− = A(j : n, k)A(j, k)
(8) end
(9) end

Figure 4. Pseudocode for sequential Cholesky factoriza-
tion.

The sequential algorithm is listed in Fig. 4. There
are two types of computations performed on the columns
of the matrix A: 1. Scaling: A column is scaled using its
diagonal term (line (2) in Fig. 4). In each iteration of k,
one column is scaled with the time complexity of Θ(n).
The columns that have been scaled are called G columns.

These columns will no longer be modified but will be used
in later computation. Scaling processes all columns se-
quentially from left to right (k = 1 : n), i.e., a column is
ready to be scaled only after all the columns to its left have
been scaled and therefore turned into G columns, and af-
ter itself is updated using the information from all these G
columns; 2. Updating: A column is updated (line (7) in
Fig. 4) using the values in all the G columns to its left. The
work of updating for each iteration of k is Θ(n2).

We distribute the data (i.e., the matrix A) to the par-
ticipating nodes. The columns of matrix A are distributed
to the nodes in a round robin fashion, in order to achieve
better load balancing [3]. If the the final objective is a DSC
program, a block fashion should be chosen. In order to
transform the sequential algorithm into DSC, we insert two
hop() statements to the sequential code, one in each loop.
The first hop(), inserted between lines (1) and (2) in Fig. 4,
migrates the computation to the node that hosts the column
being scaled, whereas the second hop(), inserted between
lines (6) and (7) in Fig. 4, drives the computation to all the
nodes in sequence carrying the G column from the latest
scaling to perform updating. Before the second hop(), one
assignment is used to load the most recent G column into
an agent variable. Also, the loop indices k and j are stored
in agent variables. The execution of the DSC program is
visualized in Fig. 5(a), in which the number of nodes p is
assumed to be 3. Each thick line represents a hop, some of
which might be hopping to a node itself.

Now we transform the DSC program into a DPC pro-
gram. The updatings on different nodes are independent of
each other; but rather they all depend on the previous scal-
ing, as depicted by the arrows in Fig. 5(a). Therefore, con-
current updating DSCs can be employed after each scaling
step, as shown in Fig. 5(b).

The DPC program is listed in Fig. 6(b). There are
two types of composing DSC programs: a single scaling
DSC named Scaler (with code lines (1)–(10)), and multi-
ple updating DSCs named Updaters (with code lines (11)–
(18)). Scaler carries the loop index k, an agent variable,
that loops through all columns of matrix A. On the k th

iteration, Scaler scales column k (line (4)). The function
col(k) maps the global column index k to a local column
index; this function is needed because each node stores
only a portion of the entire global matrix A. After scaling
the column, Scaler injects p Updaters (lines (7.1)–(8.1)),
and then it hops to the node that owns the next column of A
(line (9.1)). The ID of this node is found using a column-
to-node map function node map(). Scaler then waits for
the next round of computation. Each of the p Updaters
loads the newly computed G column k (again the local col-
umn index is col(k)) into its agent variables (line (12)), and
then hops to the appropriate node (line (12.1)). In parallel,
these p threads update the A columns for which they are
responsible on all p nodes, using the G column stored in
their agent variables and the matrix entries of A (line (15)).
Two maps are used in the DPC code (lines (4), (9.1), (12),
(12.1), and (15)). In particular, here the column-to-node



node2node1 node3

Execution flow

Dependency

Updating

Scaling

t8

t7

t (
tim

e)

s (space)

t6

t5

t4

t3

t2

t1

(a)

node1 node2 node3

t1

t2

t3

t4

t5

t6

t7

s (space)

t8

t (
tim

e)

Updating

Dependency

Execution flow

Scaling

(b)

Figure 5. Cholesky factorization. (a) DSC. (b) DPC employing concurrent DSCs.

map is node map(k) = (k − 1)%p + 1, and the global-to-
local-column-index map is col(k) = (k − µ)/p + 1, where
k is global column index, p is number of nodes, and µ is
current node ID. The two types of DSCs, namely scaling
and updating, interact with each other in the DPC program
using only local injections or events. There are three lines
of code that use signalEvent() and waitEvent() primi-
tives (lines (9.2), (12.2), and (17.1)) in order to synchronize
the threads running on the same node. signalEvent() and
waitEvent() implement the classical operations of pro-
cess blocking and wake-up. After Scaler executes the
inject() command at line (8), it hops away immediately,
and then the injected Updaters start executing (line (12)).
Thus Scaler hops to the next node and continues its com-
putation without having to wait for the injected Updaters
to hop away. waitEvent() at line (9.2) makes Scaler
wait until the Updater working on the same node finishes
and signals an event Evt at line (17.1). waitEvent() at
line (12.2) makes sure that all the Updaters from earlier it-
erations have finished before the current Updater can start.

The MPI code adapted from reference [3] is listed in
Fig. 7. It is obvious that the MPI code exhibits a signif-
icant departure from the original code structure. The two
nested loops are both broken. The outer for loop over k is
broken into smaller while loops over all the local columns
that a node owns. Each process executing this code runs the
while loop (line (2)) with loop index q. A global column
index k, which is the same as the loop index k in Fig. 6(a)
and (b), is being computed by all processes (lines (8) and

(25)). The local column index q is mapped to its corre-
sponding global position in the matrix A, and is then tested
against the global index k (line (3)). If the test result at
line (3) is true, the process owns the column that needs to
be scaled. Therefore, it scales the column to get a new G
column (line (4)), and passes the new G column to its right
neighbor in the node ring (line (6)), before it uses the new
G column to update the local A columns (line (11)). If the
test result at line (3) is false, this process will receive the
new G column from its left neighbor (line (15)), forward
it to its right neighbor if needed (line (19)), and then up-
date its local A columns (line (23)). The inner for loop
over j in Fig. 4 is broken into two each appearing in an
if or an else if code block. These smaller loops each up-
date the local columns that a node owns. The access to
the new G column is now through passed messages, rather
than through shared variables in the sequential or NavP
programs. Furthermore, as the for loop over j is broken
down into smaller local loops, this data communication is
relocated out of the loops, resulting in a fairly different and
complicated termination condition (lines (16)-(18)).

Each distributed sequential computation (i.e., scal-
ing and updating) is a 1D problem in the NavP view, and
their DSC implementations preserve algorithmic integrity
respectively. In particular, the nested loops are preserved
in Fig. 6(b), as opposed to being broken in the SPMD view
shown in Fig. 7. The code lines corresponding to different
computation tasks are grouped in their own DSC programs
as integral and unbreakable entities in the NavP view, re-



(1) for k = 1 : n
(2) if µ == 1
(3) vloc(k : n) = A(k : n, k)

(4) vloc(k : n) / =
√

vloc(k)
(5) A(k : n, k) = vloc(k : n)
(6) end
(7) barrier

(8) updating (µ, k, n)

(9) barrier

(10)end

(11)updating (int µ, int k, int n)
(12) vloc(k + 1 : n) = A(k + 1 : n, k)

(13) for j = k + µ : p : n
(14) wloc(j : n) = A(j : n, j)
(15) wloc(j : n)− = vloc(j)vloc(j : n)
(16) A(j : n, j) = wloc(j : n)
(17) end

(18)end

(a)

(1) for k = 1 : n
(2)
(3)
(4) A(k : n, col(k)) / =

√
A(k, col(k))

(5)
(6)
(7)
(7.1) for µ = 1 : p
(8) inject(updating (µ, k, n))
(8.1) end
(9)
(9.1) hop (node map(k + 1))
(9.2) waitEvent (Evt, k + 1)
(10) end

(11) updating (int µ, int k, int n)
(12) vloc(k + 1 : n) = A(k + 1 : n, col(k))
(12.1)hop (node map(k + µ))
(12.2)waitEvent (Evt, k)
(13) for j = k + µ : p : n
(14)
(15) A(j : n, col(j))− = vloc(j)vloc(j : n)
(16)
(17) end
(17.1)signalEvent (Evt, k + 1)
(18) end

(b)

Figure 6. Pseudocode for parallel Cholesky factorization. (a) DSM. (b) DPC employing concurrent DSCs.

gardless of where they are executed. Multiple concurrent
DSC programs are then composed into a DPC program.
As can be seen from Fig. 6(b), different DSC programs
only interact with each other with synchronization actions
such as injections or events. These synchronization actions
are all local to a node on which two or more threads that
are being synchronized reside. The “intersection” between
each composing DSC program and the resulting DPC pro-
gram is minimum, and it consists of only local synchro-
nizations. We say that each DSC is orthogonal to the DPC
program. Parallel programming using self-migrating DSCs
thus exhibits composition orthogonality. In contrast, in
the SPMD view, code lines corresponding to different com-
putation tasks are each broken into several pieces assigned
to an if or else if block. Different code pieces correspond-
ing to different computation tasks are then “tangled” to-
gether in an if or else if block in the temporal order in
which they are executed on the node.

Distributed shared memory (DSM) can actually be
used to alleviate the problem of code restructuring and tan-
gling, even if the view being used is still SPMD. This is
because on DSM code execution location does not have to
be exact to guarantee the correctness of computation. Nev-
ertheless, this may come with a high cost of communica-
tion, which makes it a non-scalable solution. For instance,
in the simple example with pseudocode listed in Fig. 2, a
DSM implementation would be the same as the sequential
program, but the cost of its execution will be to ship the

entire matrix A or B across the network. The principle
of pivot-computes is violated. The DSM code for paral-
lel Cholesky factorization, adapted from reference [3], is
listed in Fig.6(a). This code is not as efficient as either our
DPC or the MPI program. There are at least two reasons.
First, the scaling part is not always done by the pivot node
(i.e., the owner of the column being scaled). Rather, it is
all done on the node with ID µ == 1. This violates the
principle of pivot-computes, and the result is that almost
the entire matrix will be pulled to node1, which is more
expensive than needed. Second, two barriers are used for
synchronization. A barrier involves global communica-
tion and is in most cases a restriction that is stronger than
necessary. In NavP, since all data accesses to variables are
local, the only synchronization required is among different
threads on the same node; no synchronization is necessary
if two threads never meet each other. In other words, no
inter-node synchronization is required. In the DPC pro-
gram, the next round of scaling can start as soon as the
local updating from the previous iteration is done, regard-
less of whether or not the remote updatings are finished,
as depicted in Fig. 8(b). In contrast, the global barriers
(lines (7) and (9) in Fig. 6(a)) are less efficient. The next it-
eration can only start after all Updaters from the previous
iteration have finished, as depicted in Fig. 8(a). In a dis-
tributed environment with relatively high network latency
and heterogeneous loads and processing powers, the perfor-
mance improvement from this overlapping using local syn-



(1)k = 1; q = 1; col = µ : p : n; L = length(col)
(2)while q <= L
(3) if k == col(q)

(4) Aloc(k : n, q) / =
√

Aloc(k, q)
(5) if k < n
(6) Send (Aloc(k : n, q), right)
(7) end
(8) k = k + 1
(9) for j = q + 1 : L

(10) r = col(j)
(11) Aloc(r : n, j)− = Aloc(r, q)Aloc(r : n, q)
(12) end
(13) q = q + 1
(14) else
(15) Recv (gloc(k : n), left)
(16) α = proc which sent kth G col
(17) β = index of right′s final col
(18) if right �= α and k < β
(19) Send (gloc(k : n), right)
(20) end
(21) for j = q : L
(22) r = col(j)
(23) Aloc(r : n, j)− = gloc(r)gloc(r : n)
(24) end
(25) k = k + 1
(26) end
(27)end

Figure 7. Pseudocode for parallel Cholesky factorization
using MP in the SPMD view.

chronizations can be significant. Similar to DSM, NavP al-
lows the programmers to do shared variable programming
[4], but in NavP programs the less efficient barriers are
not used for synchronization.

We implement the pseudocodes shown in Fig. 6(b)
and Fig. 7 using MESSENGERS and MPI (LAM 6.5.9), re-
spectively. The performance data is obtained from SUN
Ultra Ultra 60’s with 256MB of main memory, 1GB of vir-
tual memory, and 100Mbps of Ethernet connection. These
workstations have a shared file system (NFS). Fig. 9 shows
the speedup data obtained from running both our DPC and
the MPI programs. The speedup of our DPC program is al-
most the same as that of the MPI program, and their trends
as the number of machines increases are the same which
indicates same scalability. In order to make the NavP view
practically useful, the hop() statements in our code must
be very efficient. This is addressed in our earlier work [5],
and the key idea is to avoid moving code as the locus of
computation migrates.

5 Final Remarks

In fluid dynamics [6], the Eulerian view considers changes
as they occur at a fixed position in the fluid, while the La-
grangian view considers changes which occur as we fol-
low a fluid particle along its trajectory. The Eulerian view is
the SPMD view, and the Lagrangian view is our NavP view,

t1
barrier

(a)

t2

(b)

Figure 8. Synchronization. (a) Global with barriers. (b)
Local in the NavP view.

1 2 3 4 5 6 7 8 9 10 11 12
1

2

3

4

5

6

7

8

9

10

11

12
Speedup of Parallel Cholesky Factorization (5,000X5,000 matrix)

Number of Workstations

S
pe

ed
up

MESSENGERS
MPI

Figure 9. Performance of parallel Cholesky factorization.

if we replace the fluid space by the distributed environment,
and the fluid particles by the self-migrating threads. Com-
putations are assigned to the threads, and their changes are
described following the migration of the “fluid particles.”

Another analogy comes from our daily life. A train
system provides two views. The two views are in the form
of two types of train schedules. One type is the arrival and
departure information shown on the monitors in all the train
stations. This corresponds to the SPMD view because the
descriptions are at fixed spatial locations. The other type
of schedule is the brochures showing train numbers, their
passing stations and the times. This is like the NavP view
since the descriptions follow the trains’ traces.

Fig. 10 shows a 2D system in which each directed
curve, labeled as T1-T4, can be taken as a trace of a fluid
particle, a train, or a self-migrating thread. Table 1(a) de-
scribes the system in the SPMD view. Each column cor-
responds to a spatial location. In contrast, each column
in Table 1(b) describes the movement of one trace, which
makes the table a NavP representation of the same system.



t1

t2

t3

t4

ss1 s2 s3 s4

t

T1 T3 T4T2

Figure 10. A two-dimensional system consists of four
traces (T1-T4).

Table 1. The two views of the same system. (a) SPMD.
(b) NavP.

s1 s2 s3 s4

t1 T1 T2 T3 T4
t2 T2 T1 T4 T3
t3 T1 T2,T4 T3
t4 T2 T1,T3 T4

(a)

T1 T2 T3 T4

t1 s1 s2 s3 s4
t2 s2 s1 s4 s3
t3 s1 s2 s3 s2
t4 s2 s1 s2 s3

(b)

The information provided by one view can be pre-
sented in another view. In distributed programming, this
means that any programming task that a programmer can
do in one view can be done in another view. Despite this,
a particular view is good for a particular task. For exam-
ple, the information of arrivals and departures shown on the
monitors in one station is good for people that are in that
station providing local services. This observation suggests
that SPMD is good for client-server type of applications.

Composition orthogonality means that in a DPC pro-
gram when new DSCs are added in, or existing DSCs are
removed, the behaviors of other DSCs remain mostly in-
tact, except for adding or removing some synchronizations.
This avoids dramatic change in code structure. In contrast,
an SPMD program describes all tasks that will run on a
node in an if or else if block; this corresponds to a “verti-
cal cut” at a spatial location in Fig. 10. The code for differ-
ent tasks are thus tangled in the blocks. The SPMD view
makes the job of adding or removing a task difficult.

It may not be possible to see in real life all the spatial
locations such as the train stations collapse into one. But in
distributed programming, this corresponds to the backward
uniprocessor compatibility of a distributed program. Pro-
grams developed in the NavP view are backward uniproces-
sor compatible, because after the hop() statements are ig-
nored, they become multi-threaded programs on a unipro-
cessor machine. The DSCs coordinate with each other us-
ing events and injections, and they each preserve their se-

quential code structures. Such a multi-threaded program
is a special case of a distributed parallel program in the
NavP view. The same is not true for the SPMD view,
since the location related information is used not only in
the Send() and Recv() statements, but also in code re-
structuring (i.e., if and else if statements). An SPMD pro-
gram looks strange on a uniprocessor machine, and the al-
ready changed code structure cannot be easily restored to
the original shape. It is awkward to see messages sent to
and from the same node itself. Maintaining such code for
uniprocessor machines is unnecessarily difficult.

The use of the NavP view is only possible in dis-
tributed programming with the introduction of computation
mobility carried by mobile agents. Strong mobility pio-
neered by the mobile agent community is the cornerstone
of the new vision. In return, the usefulness of the new view
is likely to encourage further research in mobile agents [7].

References

[1] L. Pan, L. F. Bic, and M. B. Dillencourt, “Distributed
sequential computing using mobile code: moving com-
putation to data,” in Proceedings of the 2001 Interna-
tional Conference on Parallel Processing (ICPP 2001),
L. M. Ni and M. Valero, Eds. Los Alamitos, Calif.:
IEEE Computer Society, Sept. 2001, pp. 77–84.

[2] C. Leopold, Parallel and Distributed Computing: A
Survey of Models, Paradigms, and Approaches. New
York: John Wiley & Sons, 2001.

[3] G. H. Golub and C. F. Van Loan, Matrix Computations,
3rd ed. Baltimore, Md.: Johns Hopkins University
Press, 1996.

[4] L. Pan, L. F. Bic, and M. B. Dillencourt, “Shared vari-
able programming beyond shared memory: Bridging
distributed memory with mobile agents,” in Proceed-
ings of the 6th International Conference on Integrated
Design & Process Technology (IDPT-2002), H. Ehrig,
B. Kramer, and A. Ertas, Eds. Grandview, Texas: So-
ciety for Design & Process Science, June 2002.

[5] C. Wicke, L. F. Bic, M. B. Dillencourt, and M. Fukuda,
“Automatic state capture of self-migrating computa-
tions in MESSENGERS,” in Proceedings, Second Inter-
national Conference on Mobile Agents, MA ’98, ser.
Lecture Notes in Computer Science, K. Rothermel and
F. Hohl, Eds., vol. 1477. Berlin, Germany: Springer-
Verlag, Sept. 1998, pp. 68–79.

[6] D. J. Tritton, Physical fluid dynamics, 2nd ed. New
York: Oxford University Press, 1988.

[7] D. Kotz, R. Gray, and D. Rus, “Future directions for
mobile agent research,” IEEE Distributed Systems On-
line, vol. 3, no. 8, 2002.


